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We study numerically the character of electron eigenstates of the three-dimensional disordered Anderson
model. Analysis of the statistics of inverse participation ratio as well as numerical evaluation of the electron-
hole correlation function confirms that there are no localized states below the mobility edge, as well as no
metallic states in the tail of the conductive band. We discuss also finite size effects observed in the analysis of
all the discussed quantities.
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I. INTRODUCTION

Localization of electrons in disordered systems1 manifests
the wave character of the electron propagation. Components
of the wave function, scattered on randomly distributed im-
purities, interfere with each other. This interference might
lead to the electron localization.

While all states are localized in one-dimensional systems,
the localization of all electronic states in three-dimensional
�3D� systems appears only when the strength of the disorder,
W, exceeds a certain critical value Wc. For weaker disorder,
W�Wc, the energy band is divided into two parts, separated
by the mobility edge Ec. It is supposed that all states with
energy �E��Ec are metallic �conductive�, while only local-
ized states exist for �E��Ec.

Although electron localization is easy to understand intu-
itively, the wave character of electron propagation causes
new, nontrivial phenomena in all three transport regimes.

In the limit of weak disorder, the system is metallic, but
the scattering of electrons on impurities is responsible for
nonclassical phenomena, such as the universal, system size
independent conductance fluctuations2,3 and weak localiza-
tion �antilocalization�.4,5 The complete description of the
transport was given by the Green’s function method,3 ran-
dom matrix theory,2,6 Dorokhov-Mello-Pereyra-Kumar
�DMPK� equation,7 or supersymmetric methods.8

In the opposite limit of strong disorder �localized regime�,
the fluctuations of the conductance are so strong �they ex-
ceed the mean conductance in many orders of magnitude�
that the conductance itself is not a relevant parameter of the
theory anymore. Instead, the logarithm of the conductance
must be studied.9

Owing to huge fluctuations, the analytical description of
the critical regime is much more complicated. Thus, although
the critical metal-insulator transition is well understood by
the single parameter scaling,10 quantitative estimation of
critical parameters is still an almost unsolvable problem. Of
particular interest is the critical exponent �,11 which deter-
mines the divergence of the correlation length, �� �E−Ec�−�,
at the mobility edge. Over two decades, there is a discrep-
ancy between theoretical predictions and numerical estima-
tions of �. For the 3D Anderson model, numerical results �
�1.5–1.57 obtained by various numerical methods,12–16

overestimate the analytical prediction, �=1.17,18 The dis-
agreement is even worse in four dimensions �numerical
data19–21 give ��1, while theory predicts �=0.5�. Numerical
data for � in low dimensional systems d=2+� �	
1� �Refs.
19 and 20� also do not agree with the analytical 	
expansions.11

Recently, it became clear22,23 that this discrepancy is due
to the inhomogeneous spatial distribution of electrons in the
critical regime,8 which leads to the momentum dependent
diffusive constant.24

The inhomogeneous spatial distribution of electrons in the
critical and localized regimes25,26 inspires people to build
mean field theories on the analysis of the statistics of the
local density of states.27,28 Recent numerical data29,30 led to
new analytical theories of the transport in the strongly local-
ized regime.31–33

In this paper, we study numerically the character of eigen-
states of the disordered 3D Anderson Hamiltonian. Our aim
is to exclude any possibility for the existence of localized
states below the mobility edge, Ec. The performed analysis
is inspired by the recent analytical theory of the Anderson
transition,34 which predicts that the number of metallic states
decreases continuously to zero when Fermi energy ap-
proaches the mobility edge from the metallic side. The idea
is formulated in terms of the electron-hole correlation func-
tion �q�E ,�� �defined later by Eqs. �3� and �4��, which pos-
sesses in the limit of small energy difference � and small
wave vector q the diffusive pole of the form

�q�E,�� =
2��E�

− iA�E�� + D���q2 . �1�

���E�=Im G�E+ i�� / is the density of states35 determined
by the one electron Green’s function G�E+ i��, and D is the
diffusion constant.�

Expression �1� differs from the “classical” diffusion
pole17 by the presence of the function A�E�. It is claimed in
Ref. 34 that A�E� increases when E approaches the mobility
edge and becomes infinite at the critical point. The ratio
��E� /A�E� determines the portion extended �diffusive� states
from all available states, given by ��E�. The rest states,
��E�� �A−1� /A, are spatially localized, although E lies in
the metallic phase, �E��Ec.
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Intuitively, the existence of localized states in the metallic
phase seems to be impossible.5 It also contradicts analytical
analysis of the electron eigenstates.8,36,37 Nevertheless, no
numerical analysis of this problem has been performed yet.
The present paper fills this gap.

We investigate in Sec. II the singular behavior of
�q�E ,����−1 for q=0 and prove that A�E��1 for all ener-
gies E, both in the metallic and localized regimes. This con-
firms theoretical expectations.17,26 We also analyze the diffu-
sive pole in the metallic phase �band center�, find the
diffusive constant, and discuss statistical properties of the
function �q�E ,��.

Another proof of the absence of localized states in the
metallic phase is given in Sec. III, where we study the prob-
ability distribution of the inverse participation ratio �IPR�5

defined later by Eq. �11�. Statistical properties of IPR were
analytically studied in Refs. 8, 36, and 37. Statistical prop-
erties of IPR at the critical point were the subject of analyti-
cal and numerical analyses in connection to the multifractal
spatial distribution of electrons.25,26,38 Scaling of the IPR in
the critical region was proved in Ref. 39 Here, we discuss
how the probability distribution of the IPR depends on the
system size and the distance E−Ec of the energy from the
mobility edge. Our data show that the probability to find the
localized states in the metallic phase decreases exponentially
when the size of the system increases.

Electron eigenenergies and wave functions are calculated
for the 3D Anderson Hamiltonian,

H = 	
r�

�r�cr�
†cr� + V 	

�r�r�� �

cr�
†cr�

� . �2�

Here, r� determines the site in the 3D lattice of the size L3, �r�

is the random energy distributed with the Gaussian distribu-
tion, and PG��r��= �2W2�−1/2 exp�−�r�

2 /2W2�. Parameter W
measures the strength of the disorder and V=1 determines
the energy scale. For E=0, the critical disorder Wc�6.15.
We fix the strength of the disorder W=2 throughout this
paper. Then, the mobility edge Ec=6.58 separates the metal-
lic and insulating phases.39

II. ELECTRON-HOLE CORRELATION FUNCTION

In this section, we investigate the electron-hole correla-
tion function defined as

��E,�,r�� ,r�� = 
G�E + �/2 + i�,r�,r�� �G�E − �/2 − i�,r�� ,r��� .

�3�

Here, G�E+ i��= �E+ i�−H�−1 is the one-particle Green’s
function,35 which determines the density of states, and 
¯�
means averaging over realization of the disorder.

We calculate the Fourier transformation

�q�E,�� = 	
r�,r��

eiq� ·�r�−r�� ���E,�,r�� ,r�� , �4�

set q=0, and analyze the singular � dependence

�0�E,�� =
B�E�
− i�

, � → 0. �5�

Comparison with Eq. �1� gives B�E�=2��E�. Coefficient
B�E� would either equal to 2��E� �case A�1�, or it would
decrease to zero, B�E���Ec−E��, if the scenario proposed in
Ref. 34 is true.

Before presenting numerical data, it is worthwhile to
comment the numerical method of calculation of the Green’s
functions. Our method is based on the numerical inversion of
the matrix E� i�−H. For the reliability of data, the choice of
the value of the small imaginary part of the energy, �, is
crucial. We expect that � should be comparable to the typical
level spacing, 1 / ���E�L3�. Using numerical data for the den-
sity of states at the band center, ��E=0��0.115, we choose
�=5 /L3. This value is sufficiently large to avoid any numeri-
cal instabilities �discussed later in Sec. III C� in the band
center, but it might be too small in the band tail, where the
density of states is much smaller. Therefore, various larger
values of � were used to guarantee the numerical stability of
our results.

As an example of how the value of � influences the accu-
racy of numerical results, we show in Fig. 1 the probability
distribution P�Im �0� for energy E=7 and the system size
L=18. A statistical ensemble of N=2000 samples was used
to calculate the distribution. If � is much smaller than the
level spacing, then the distribution P�Im �0� consists of high
peak close to zero, and very long tails toward high values.
This is because the density of states

��E� = �	
n

��E − En� � 	
n

�/2

�E − En�2 + �2 �6�

consists of a set of very narrow separated peaks centered
around eigenenergies En for small �. Numerical data for �0
become reliable only for larger values of �, for which the
density of states is a smooth function of the energy. As
shown in Fig. 1, P converges to the Gaussian distribution,
independent of � for sufficiently large values of �.

A. Singularity of �0 for �\0

Figure 2 shows numerical data for the imaginary part of
�0�E ,�� as a function of � for three values of the energy
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FIG. 1. �Color online� Probability distribution P�Im �0� for E
=7, �=0.14, L=18, and for three values of �. The density of states
��E=7��0.0076 and the mean level spacing is �130 /L3�0.0223.
The distribution obtained for �=5 /L3 is clearly unphysical, but the
choice �=60 /L3 is already sufficient to reach the Gaussian distribu-
tion of Im �0.
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E=5, E=6.58 �the mobility edge�, and E=7. Data prove the
singular behavior �0�1 /�. Comparison of numerical data
calculated for two and more different values of � enables us
also to estimate the accuracy of our results. Although the
singularity �1 /� transforms to Im �0�� / ��2+�2� when �
�0, Im �0 becomes independent of � for ��� �the region
left from the vertical line in Fig. 2�. Only these data were
used for the calculation of the coefficient B�E�.

In Fig. 3, we plot numerical data for the coefficient B�E�
and compare them with 2��E�. The density of states ��E�
was calculated by direct diagonalizing of the Hamiltonian for
L=8 and L=16. To increase the number of eigenstates, sta-
tistical ensembles of N=103 samples were used for each L.
As shown in Fig. 3, the density of states in the band tail still
depends on the system size. Clearly, L=8 is not sufficient for
the calculation of �. To check the convergence of the density
of states, we calculated the density of states for the energy
E=7, also from the statistical ensemble of samples of the
size L=40. The eigenenergies were calculated by the Lanc-
zos algorithm.39 A comparison of the obtained density of
states for L=16 and 40 ���E=7�=0.0076 for L=16, and

��E=7�=0.0087 for L=40� indicates that the convergence of
the density of states is very slow in the band tail.

As shown in Fig. 3, obtained coefficient B�E� agrees very
well with our data for the density of states

B�E� = 2��E� . �7�

The agreement is even better when we compare � and B�E�
calculated for the same system size. Since the size correc-
tions of both B�E� and ��E� are positive �both quantities
increase when L increases�, we conclude that our data for
B�E� shown in Fig. 3 definitely exclude the possibility that
B�E� decreases to zero when E approaches the mobility edge.

B. �q for nonzero q

In this section, we calculate the electron-hole correlation
function �q for nonzero values of q. We show that numerical
data are consistent with theoretical prediction. From numeri-
cal data, we estimate the diffusion constant D.

In general, D is a function of both � and q. Numerical
analysis of D�� ,q� for critical disorder W=Wc and energy
E=0 was performed in Ref. 40. Numerical simulations con-
firmed scaling behavior of the diffusive constant in the criti-
cal regime, predicted theoretically.24 Since the critical region
around the mobility edge E=Ec is very narrow,39 we restrict
our analysis to the metallic regime, W=2
Wc and E=0.
Here, we expect that D is constant, independent of the fre-
quency and wave vector.

Figure 4 shows the real and imaginary parts of the func-
tion q2�q as follows:

q2�q�E,�� =
2��E�

− i�/q2 + D
, �8�

as a function of � /q2. The sizes of the system are L=12, 14,
and 16 with periodic boundary conditions. Three values of
the wave vector were considered: q�: �1,0,0�, �1,1,0�, and
�1,1,1� �in units of 2 /L�. As discussed above, �=5 /L3 is
already sufficient for numerical analysis of the electron-hole
correlation function at the band center. We use this value in
all calculations below.

Numerical data lie on the one universal curve. This uni-
versality is better pronounced for small values of q. Stronger
finite size effects are observed for larger q. Data for L=16
are fitted to Eq. �8� with fixed density of states 2��E=0�
=0.72 and free parameter D. Fits are shown in Fig. 4 by
dashed lines. From fits, we estimate the diffusion constant

D � 1.05 � 0.10. �9�

This value is compared with the diffusion constant calculated
by the transfer matrix method from the L dependence of the
conductance as follows:

g�L� = �L , �10�

where �=e2D�E���E� is the conductivity.20 We obtained D
�1.055, which perfectly agrees with our estimation �9�.

Finally, we present in Fig. 5 the probability distribution of
the real part of q2�q for three sizes of the system � /q2�1
for all systems. Our results confirm that the distribution de-
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FIG. 2. �Color online� The imaginary part of �0�E ,��, given by
Eq. �5�, as a function of �−1. E=5, L=12 �circles�; E=6.58, L
=16 �squares�; and E=7, L=18 �triangles�. �=5 /L3 �open symbols�.
Higher values of � were used to check the stability of data: �
=15 /L3 �E=6�, 40 /L3 �E=6.58�, and 80 /L3 �E=7� �full symbols�.
Only data left of the vertical line were used for calculation of B�E�.
Solid lines are fits ln Im �0=−ln �+ln B�E�.
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FIG. 3. �Color online� The coefficient B�E� vs energy E com-
pared with the density of states 2��E�. Only the critical region is
shown. Deep in the metallic phase, the coincidence of B�E� and
2��E� is even better. Sizes of the system are L=8 �circles� and
L=16 �triangles�. Open triangles show B�E� calculated in Fig. 2 for
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The density of states is calculated for Nstat=1000 systems of sizes
L=16 �dashed line� and L=8 �dotted line�. Dirichlet boundary con-
ditions were used for calculation of both ��E� and �0. Vertical line
marks the position of the critical point.
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pends only on the ratio � /q2. This is consistent with Eq. �8�.
More important, data in Fig. 5 indicate that P does not de-
pend on the system size.

III. INVERSE PARTICIPATION RATIO

The absence of localized states in the metallic phase can
be demonstrated also by the analysis of the probability dis-
tribution of the inverse participation ratio, defined as5,26

I�En� = 	
r

��n�r��4. �11�

Here, En and �n�r� are the nth eigenenergy and eigenfunc-
tion of the Hamiltonian �2�, respectively. If �E��Ec, then we
expect that all eigenstates are conductive, with the wave
functions distributed more or less homogeneously through-
out the sample, so that ��n�r��2�L−d. Inserting in Eq. �11�,
we obtain that I�En��L−3 �in the 3D system�. On the other
hand, the wave function of localized electrons is nonzero
only in a small region, where ��n�r���1.

Hence, I�En��1. The size dependence of I�En� in the
critical region deserves more detailed analysis since the spa-
tial distribution of electrons is multifractal26,38 and I�L−d2

where d2�1.28.39

A. Size dependence of inverse participation ratio

The energy spectrum of the Hamiltonian depends on the
system size, L, and on the microscopic details of the disorder
in a given sample. For a given system size, we consider a
statistical ensemble of Ns samples which differ only in the
realization of random energies, �r�. For each sample, we cal-
culate all eigenenergies, En, lying in a narrow energy inter-
val, E−�, E+�, and calculate corresponding I� I�En�. For
the ith sample, the number of eigenstates, ni, depends on the
microscopic realization of the disorder.

Collecting Nstat=	ini values of the IPR, we can construct
its probability distribution P�I� or P�ln I�. Since the values of
I might fluctuate in many orders in magnitude in the critical
region,8 it is more convenient to use the logarithm of I and
the mean value

Y � Y�E� =
1

Nstat
	

i

Ns

	
�E−En���

ln I�En� . �12�

The upper left panel of Fig. 6 shows the system size de-
pendence of Y for three energies below the mobility edge.
We found that Y �aE ln L. In the metallic regime, we expect
aE=−3 for all �E��Ec. At the mobility edge, aE=Ec

=d2, the
fractal dimension.39 For E=3, which is the energy far below
the mobility edge, we indeed find a3=−3, in agreement with
our expectations. Higher values of aE obtained for energies
closer to the mobility edge are due to the finite size effects.
We expect that aE converges to −3 when the size of the
system increases, L→�. This is consistent with the analyti-
cal expression for the mean IPR as follows:36


I�L�� = L−3�1 + 4L/��g�� . �13�

Deep in the metallic regime, �E��Ec, the conductance g is
�L �Eq. �10��, so that Eq. �13� reproduces 
I��L−3. How-
ever, the linear increase of g�L can be obtained only when
the size of the system L��. For a smaller-size system, L
��, the correction term 4L /�g in Eq. �13� becomes L depen-
dent and causes the deviation from the L−3 dependence of
mean I. The scaling behavior of the IPR for energies close to
the mobility edge is discussed later in Sec. III C.

0 0.25 0.5 0.75 1
0

1

2

3

4

L16
L14
L12

Re q2Γq

P
(R

e
q2

Γ
q
)

FIG. 5. �Color online� The probability distribution of q2�q for
q=1 and three system sizes, L=12, 14, and 16 and � /q2�1. The
width of the distribution does not depend on the size of the system.
The mean value, 
q2�q�=0.37, and the variance, var q2�q�0.11, do
not depend on the size of the system.
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B. Probability distribution of inverse participation ratio

Because of the randomness and wave character of the
electron motion, the mean value of any quantity might not
provide us with the entire information about the system. For
instance, although Y �−3 ln L, there still might exist some
localized electronic states with an eigenvalue En and ln I
�0. To measure the probability that insulating states exist in
the metallic phase ��E��Ec�, we plot in Fig. 6 the probability
distribution P�ln I� calculated for three energies and various
sizes of the system.

Data for E=3 confirm that P�ln I� gets narrower when L
increases. This is consistent with the analytical result, var I
�L−2.36 The narrowing of the probability distribution is less
visible for energies close to the mobility edge Ec.

Since the mean value, Y, decreases as �aE ln L when L
increases, the existence of localized states is possible only if
P�ln I� possesses a long tail which assures a nonzero prob-
ability to have ln I�0 for any system size. However, our
data in Fig. 6 show that this is not the case. On the contrary,
P�ln I� decreases exponentially for ln I larger than Y. To
measure this exponential decrease quantitatively, we calcu-
late the probability that ln I is larger than a certain value,
Imin, as follows:

�Imin
= �

Imin

�

d ln I�P�ln I�� = �
Imin

�

dI�P�I�� . �14�

We choose Imin=L−2 for E=3 and Imin=L−3/2 for E=6.0. In
Fig. 7, we prove that �Imin

decreases exponentially as a func-
tion of the size of the system L. This is consistent with the-
oretical prediction P�I��exp�−�I�.8 Note that this exponen-
tial decrease is visible already for energies very close to the
critical point �right panel of Fig. 7�. Since I�En��1 for the
localized states En, the probability to observe the localized
states inside the metallic phase decreases exponentially when
the size of the system increases. We conclude that the prob-

ability to find any localized states is zero in the limit of
L→�.

A similar conclusion, namely, that there are no metallic
states in the energy interval E�Ec, can be derived for local-
ized phase. In Fig. 8, we show the probability distribution
P�ln I� for eigenstates around the energy E=7.5. Clearly, the
distribution is size independent, and decreases exponentially
for small values of ln I. Since metallic states require that
ln I�−3 ln L, we conclude that there are no metallic states in
the insulating phase.

C. Finite size scaling

The right upper panel of Fig. 6 shows the distribution of
the IPR in the metallic regime. The distribution is centered at
3 ln L, in agreement with our expectation. More important is
the form of the distribution for larger values of ln I. Our data
show that the probability to observe ln I�−2 ln L decreases
exponentially when the size of the system increases. Hence,
we conclude that there are no localized states.

However, as is shown in the lower panels of Fig. 6, nar-
rowing of the distribution P�ln I� can be numerically ob-
served only when the energy E lies deep in the metallic
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FIG. 6. �Color online� The left upper panel shows the system
size dependence of Y �aE ln L with a3=−3.006, a6=−2.326, and
a6.5=−1.48. Three other panels show the probability distribution
P�ln I� for three energies of the electron and for the system sizes
L=18 ���, 24 ���, 32 ��� and L=40 ���. Note the scaling of the
horizontal axis. Nstat=105 eigenstates from the interval �En−E�
�0.025 were used for the statistics �Ref. 39�.
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FIG. 7. �Color online� Left panel: The size dependence of the
probability �, defined by Eq. �14� with Imin=−2 ln L for the energy
E=3. The right panel shows the probability �Imin

for Imin=
−3 /2 ln L and E=6. Data confirm that �Imin

decreases exponentially
when the size of the system increases.
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FIG. 8. �Color online� Probability distribution P�ln I� for the
localized states for L=12, 16, 20, and 24. The distribution only
weakly depends on the size of the system and decreases exponen-
tially when ln I decreases. Consequently, the probability to find, for
instance, the eigenstates with ln I�−ln L decreases exponentially
when L increases. Therefore, the probability to find the conductive
states in the localized phase ��E��Ec� is exponentially small.
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phase. This is easily understood. The metallic phase can be
observed only in systems of size L���E�, where ��E� is the
correlation length.12 Since ��E� diverges as ��E�� �Ec−E�−�

���1.57 is the critical exponent� when E→Ec
−, we cannot

observe the metallic behavior for energies close to the mo-
bility edge and for fixed size of the system. Nevertheless,
reliable conclusion about the character of metallic states in
the vicinity of the mobility edge can be drawn with the use
of the finite size scaling analysis.10 The probability distribu-
tion P�ln I� depends both on the energy E and on the size of
the system L. Following the scaling theory, P calculated for
a given energy E and size L is equivalent to P obtained for
E� closer to Ec, but larger system size L��L.

Scaling of the IPR in the critical region was numerically
proved in Ref. 39. In Fig. 9, we demonstrate how the scaling
idea works in the metallic phase. The distributions P�ln I�
were calculated for various energies of the electron and for
three sizes of the system. We see the similarity in the form of
P�ln I� calculated for different E and L. For instance, the
distribution for E=3.1 and L=16 is similar to the distribution
for E=0.1 and L=12. Similarly, we can compare E=5.1 and
L=24 with that for E=4.1 and L=12. We also see that the

form of the probability distribution P�ln I� only weakly de-
pends on the energy E of the electron when L���E�. From
this similarity, we conclude that the properties of the distri-
bution P�ln I� are universal in the metallic phase when L
→�. Therefore, the probability to find the localized states
decreases to zero for any energy �E��Ec.

IV. CONCLUSION

We studied numerically two parameters that are important
for the construction of the analytical theory of the metal-
insulator transition. First, we verified the relation between
electron-hole correlation function � and the density of states,
Eq. �5�. We proved that this relation not only holds for all
energies of the electron, both in the metallic and localized
phases, but can also be recovered for any size of the system.
Our numerical procedure enables us to calculate, from �, the
diffusion constant D. In the metallic limit, D agrees with
estimation from the transfer matrix. Also, numerical data in-
dicate that �q�E ,�� is not the self-averaged quantity in the
metallic regime.

It would be interesting to investigate also the scaling be-
havior of the diffusive constant in the critical regime.24 Such
analysis could confirm numerical scaling observed recently
for the case of the critical disorder at the band center.40 How-
ever, since only frequencies ��� are relevant in numerical
data, we have to analyze much larger system sizes in order to
fit both energies E�� /2 into the narrow critical region.39

We also present numerical data for the mean values and
for probability distributions of the inverse participation ratio.
Our data, consistent with previous analytical results, enable
us to prove that there are no localized states inside the me-
tallic phase. All electron states are extended, and the prob-
ability to find the states, which do not span through the
sample, decreases exponentially to zero when the size of the
system increases. Similarly, no metallic states were observed
on the opposite side of the critical point: In the insulating tail
of the spectra, all electronic states are localized. Although
this result seems to be easily accepted,5 it was never proved
numerically.

In contrast to the analytical theory, numerical methods do
not enable the analysis of the behavior of any quantity in the
limit of infinite system size. We can only describe how the
variables of interest change when the size of the system in-
creases. With the use of the finite size scaling hypothesis, we
conclude that our results remain valid also in the limit of L
→�. Since all data were obtained without any additional
assumption about the averaging procedure or the statistics of
parameters of interest, they can serve as a starting point for
the construction of the analytical theory of the Anderson
transition.
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